
Pair vs Solo Programming: Students’ Perceptions
Madhumita Singha Neogi1 , Vandana Bhattacherjee2

1Deptt. of IM, Xavier Institute of Social Service, Ranchi
2Deptt. of CS & E, Birla Institute of Technology, Ranchi

Abstract -In recent past the concept of pair programming has evolved as
one of the important technique of coding. It is one of the most talked
about aspects of XP. Pair programming is a methodology in which two
people work together and periodically switch between the roles of driver
and navigator. Instead of partitioning a task into a number of activities,
where each member performs a different activity alone, in pair both
partners perform each activity together. Pair programming concepts have
been introduced in the classroom and students’ reaction to the same has
been presented in this paper. Further, this paper presents the results of an
experiment conducted to assess the pair programmers’ as well as
individual programmers’ ability in terms of effort and efficiency. The
study was conducted with two groups of students. Both the groups solved
the lab assignments in pair as well as in solo programming technique. The
two parameters were evaluated in this study one is the effort and the other
is the efficiency. Effort was measured as number of hours spent per
person and efficiency we have measured as number of test cases passed
after completion of the assignments as well as number of failures per ten
runs. The students were given a questionnaire after completion of the
assignments and evaluation. Their responses were evaluated using factor
analysis and performance of pair and solo programming technique were
compared using paired sampled t-test. This paper presents the results of
the factor analysis and t-test. The results show that pair programming
technique has greater impact than solo programming in terms of effort
and efficiency.
Keyword -Pair programming, solo programming, effort, efficiency.

1. INTRODUCTION

A key concept during the coding activity is pair programming.
It is one of the most talked about aspects of XP. Pair
programming is a methodology in which two people work
together and periodically switch between the roles of driver
and navigator. Instead of partitioning a task into a number of
activities, where each member performs a different activity
alone, in pair work, both partners perform each activity
together. In this research work, pair programming concepts
were introduced in the classroom and students’ reaction to the
same has been presented. This paper presents the results of a
study conducted to assess the pair programmers’ as well as
individual programmers’ ability in terms of effort and
efficiency. Effort is measured in terms of time spent to
complete the job and efficiency in terms of number of
acceptance test cases passed. These two key issues are studied
through the controlled experiment by pair programmers and
individuals. The data was collected from the students through a
questionnaire based on five scales. The questions were related
to solo and pair programming as well as effort and efficiency.
The data was then factor analyzed through a statistical
package.

2. RELATED Work

Carver et al. have conducted a study on increased retention of
early computer science and software engineering students
using pair programming. The results of the study showed that
retention significantly increased for those students already
majoring in Computer Science, Software Engineering, or
Computer Engineering. In addition, survey result indicated that

the students viewed many aspects of pair programming to be
very beneficial to their learning experience (Carver J.C., 2007).
In another study Slaten et al. studied undergraduate student
perception of pair programming and agile software
methodologies. According to them one of the reasons that
undergraduate students, particularly women and minorities,
can become disenchanted with computer science education is
because software development is wrongly characterized as a
solitary activity. The finding suggest that pair programming
and agile software methodologies contribute to more effective
learning opportunities for computer science students and that
students understand and appreciate these benefits (Slaten et al.,
2005). Muller et al. have compared the program defects caused
by pair programmer and solo programmer. Their assumption
was that pair programmer makes few mistakes than solo
programmers regardless of the programmer task and defect
type (Muller, M.M., 2007).
Erik Arisholm et al studied the effects (duration, effort, and
correctness of the maintained program) of pair programming
versus individual programming, and concluded that it will
depend on the moderating variables system complexity and
programmer expertise, both of which will have an impact on
the perceived complexity of programming tasks (Arisholm, E.,
2007). A study has been conducted by Vivekanandan et al to
investigate the students’ attitude on important issues of pair
programming. The opinion of students were obtained on pair
programming after asking them to take up pair programming to
do laboratory exercises. The data were analyzed, results
indicate that the students like to adopt pair programming as a
learning methodology. They also like to have partners whose
academic achievement is same or higher (Vivekanandan, K.,
2007). Kyungsub S. et al have studied the concept of pair
programming in another way. Their paper focuses on the
effects of some psychosocial factors, a programmer’s
personality type, may have on the pair programming
environment (Kyungsub, S., 2007).
Dyba et al have presented a study on effectiveness of pair
programming. They show the Meta-analyses of pair
programming effects on (a) quality, (b) duration, and (c) effort
(Dyba, T., 2007). Succi et al. propose an experimental
framework to quantify benefits and costs of the pair
programming practice and compare design aspects of the
resulting software products and their defect behavior. For this
purpose, they use a set of object-oriented metrics and software
reliability growth models based on occurrence of service
requests (Succi, G., 2001). Canfora et al. report the findings of
a controlled experiment on pair programming, applied to the
design phase and performed in a software company. The
results of the experiment suggest that pair programming slows
down the task, yet improves quality (Canfora, G.,
2006).Theodore et al. evaluated the usefulness of pair

Madhumita Singha Neogi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (3) , 2011, 1191-1196

1191

programming in a classroom setting (Toll III, T.V., 2007). A
two-phased study of 1350 students was conducted by Williams
et al. at North Carolina State University from 2002-2005 to
determine if teaching staff can proactively form compatible
pairs based upon any of the following factors: personality type,
learning style, skill level, programming self esteem, work
ethic, or time management preference. They examined
compatibility among freshmen, advanced undergraduate and
graduate student pair programmers. They have found that
overall 93% of students are compatible with their partners
(William, L., 2006).
Vanhanen et al. present experiences of using PP extensively in
an industrial project (Vanhanen, J., 2007). Succi et al. in their
paper reports the preliminary results of an analysis of the
effects of pair programming on job satisfaction. A
questionnaire on pair programming techniques has been
compiled and posted on the web. 108 responses have been
collected from around the world. The preliminary results
evidence a very positive effect of pair programming on job
satisfaction (Succi, G., 2005).
Kwak, Y. et al. in their paper addresses lessons learned from
implementing project risk management practices in software
development environment (Kwak, Y., 2005). Lui et al. explore
the efficacy of pairs versus individuals in program design-
related tasks separately from coding (Lui, K.M., 2008).
Authors have also conducted studies in several University
settings regarding student software development patterns
(Bhattacherjee, 2007, 2008, 2009a, 2009b, 2010) (Neogi,
2007, 2009a, 2009b, 2010).

3. OBJECTIVE OF THE STUDY

The goal of the study is to investigate and compare pair and
solo programming technique in lab environments and their
effects on few parameters of software. In this paper we have
given main emphasis on the comparison of effort and
efficiency on pair and solo programming. Our previous studies
have shown that students prefer group work in solving
assignments.
The objective of this study is to address the following
questions:

RQ1 Is pair-programming technique better than solo-
programming?

Null hypothesis in our study was that there is no significant
difference in pair-programming technique and solo-
programming. It can be stated as
• H01:µd=0 where µd is the difference of mean

(difference between preferring pair programming
technique and solo programming technique)

Alternate hypothesis was that difference between pair-
programming and solo programming is not equal to zero. It
can be stated as
 H11: µd ≠ 0 i.e. µpair(Programing-technique) ≠ µsolo(Programing-technique)

RQ2 Is pair-programming effective in reducing the
software development effort compared to solo-
programming?

Null hypothesis in our study was that there is no significant
difference in development effort between pair-programming
and solo-programming. It can be stated as
 H02:µd=0 where µd is the difference of mean
Alternate hypothesis was that mean effort for development
using pair-programming is not equal to solo-programming. It
can be stated as
 H12: µd ≠ 0 i.e. µpair(effort) ≠ µsolo(effort)

RQ3 Is pair-programming effective in improving the
efficiency of programs as compared to solo-
programming?

Null hypothesis in our study was that there is no significant
difference in efficiency between the pair-programming and
solo-programming. It can be stated as
 H03:µd=0 where µd is the difference of mean
Alternate hypothesis was that mean efficiency of programs
using pair-programming is not equal to solo-programming. It
can be stated as
 H03: µd ≠ 0 i.e. µpair(efficiency) ≠ µsolo(efficiency)

4. EXPERIMENT DESCRIPTION

4.1 Metrics Used
The experiment was conducted on the computer programming
lab. While given assignments the researcher observation was
on three key parameters. These are programming technique,
effort and effectiveness on pair and solo programming.
Programming Technique: Here we have given emphasis on
implementing pair programming technique among students
while solving lab assignments and compared their opinion with
solo programming technique which they normally follow while
solving lab assignments. Pair programming technique where
two persons sitting together share a common machine; while
one person writing code the other guides the person writing
code. The first person called the driver and the second person
is called the navigator in pair programming technique. Solo
programming is the technique where single person using a
machine writing the code nobody involve in guiding him while
writing code.
Effort: The total effort in person-hour to complete the project.
The data collected was number of hours counted after the end
of twelve consecutive weeks. The total numbers of hours spent
for each program was noted by each group of students. We
have measured effort as total time spent to develop the projects
including all the phases. Nonproductive time between the tasks
was not included. The total effort for the pairs was thus the
duration for the pair multiplied by two.
Effectiveness: Percentage of features implemented measured
as the percentage of acceptance test cases passed.
A. Test Exercise
A structured interview schedule was prepared in English. The
questionnaire initially contained 30 items. The questionnaire
was scrutinized by 3 experts and item agreed by all were
retained in the final questionnaire. The final questionnaire
consisted of a scale of 19 items. Each item was measured in a
Likert type 5 time scale – (i) Not at all, (ii) slightly, (iii)
moderately, (iv) highly, (v) very highly.

Madhumita Singha Neogi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (3) , 2011, 1191-1196

1192

When scores of all items on total sample were factor analyzed
using principal component analysis and the factors were
rotated through varimax procedure, two factors were extracted
which explained 41.7 % of total variance (See appendix A).
The first factor had significant loadings on 10 items related to
‘Pair Programming’. The sample items include “Do you think
pair programming improves effective learning?” and “Do you
think using pair programming technique, efficiency of coding
has improved?” etc. The second factor had loadings on 9 items
which assessed ‘Solo Programming”. The sample items
include “Do you think you would have paid more attention on
programming technique using solo programming/” and “Do
you think you would not try to avoid responsibility if you did
not have a partner?” etc.
Alpha reliability on the current sample was 0.86 for pair
programming and 0.75 for solo programming. High score
indicated (pair/ solo) more efficiency or more preference for
the particular programming.

B. Pair programming
Pair programming was measured with a set of 10 questions. As
mentioned earlier that each item was measured in a Likert type
5 time scale – (i) Not at all, (ii) slightly, (iii) moderately, (iv)
highly, (v) very highly.
When scores of all items on total sample were factor analyzed
using principal component analysis and the factors were
rotated through varimax procedure, two factors were extracted
which explained 53.56 % of total variance (See appendix B).
The first factor had significant loadings on 5 items related to
‘Pair Effort’. The sample items include “Do you think pair
programming improves effective learning?” and “Do you think
pair programming has improved your ability to critically
analyze?” etc. The second factor had loadings on remaining 5
items which assessed ‘Pair Efficiency”. The sample items
include “Do you think using pair programming technique,
efficiency of coding has improved?” and “Do you think
working with your partner in the same machine improves
quality of code” etc.
Alpha reliability on the current sample was 0.77 for pair effort,
and 0.75 for pair efficiency. High score indicated (pair time/
pair effort) more efficiency or more preference for the
particular programming.

C. Solo programming
Solo programming was measured with a set of 9 questions. As
mentioned earlier that each item was measured in a Likert type
5 time scale – (i) Not at all, (ii) slightly, (iii) moderately, (iv)
highly, (v) very highly.
When scores of all items on total sample were factor analyzed
using principal component analysis and the factors were
rotated through varimax procedure, two factors were extracted
which explained 50.90 % of total variance (See appendix C).
The first factor had significant loadings on 7 items related to
‘Solo Effort’. The sample items include “Do you think you
would have learned more if you had developed the
assignments alone?” and “Do you think you would have solved
the assignments alone in less time than using pair
programming?” etc. The second factor had loadings on
remaining 2 items which assessed ‘Solo Efficiency’. The

sample items include “Do you think you would have learn
more through pair programming if your partner was of less
academic level than yours?” etc.
Alpha reliability on the current sample was 0.76 for solo effort,
and 0.50 for solo efficiency. High score indicated (pair time/
pair effort) more efficiency or more preference for the
particular programming.
The variables calculated for this study
Pair=Total number of weighted questions related to pair /10
Solo= Total number of weighted questions related to solo/9
PEffort= Total number of weighted questions related to pair effort/5
SEffort= Total number of weighted questions related to solo effort /7
PEfficiency= Total number of weighted questions related to pair efficiency/5
SEfficiency= Total number of weighted questions related to solo efficiency/2

4.2 Procedures
The experiment was conducted during the lab classes. First, the
subjects were given an introduction to the experiment by the
researcher in the classroom sessions. The subjects were also
introduced to the concept of Pair Programming (PP) during the
software engineering theory classes. There it had been
discussed at length about active collaboration in PP and about
two roles (driver and navigator). The subjects were allotted one
machine per pair and were told to switch roles during lab
classes. The lab sessions were conducted under supervision of
the researcher.

4.3 Subjects
The subjects were chosen from two different colleges. A group
of computer science students was considered for the
experiment from an Engineering college of West Bengal and
the other group of post graduate students undergoing a course
of MBA systems specialization at Ranchi. Class strength is of
60 each. Few students were absent on the day the questionnaire
was collected. By the time of the experiment all subjects had
already gone through two programming languages. The
subjects were given assignments of Visual basic and Java
programming language. All the subjects were supposed to do
the assignments in alone and in pair as per the mentioned
duration by the instructor. One group of students was solving
the visual basic assignments and the other group of students
was solving the assignments on Java. One group of students
was given 16 assignments in VB and the other group was
given 22 assignments in Java. The experiment is conducted in
two phases in the first phase both the class solved half of the
assignments in alone and in the second phase both the classes
solved other half of the assignments in pair. Pairs were formed
first by selecting top 30 students from each class to make the
first partner and then for the second partner randomly selected
students from the rest of the class to minimize the biasness.

4.4 Design
In this experiment single-factor block design is used. The
subjects’ capability to develop programs in pair was
considered to be a blocking variable. To complete the design,
the exercise was replicated on two phases, first set of exercise
individually and in second phase in pair and hence they had the
same influence on both the approaches. The various elements
are described in the Table 1.

Madhumita Singha Neogi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (3) , 2011, 1191-1196

1193

Table 1: Experiment element details
Elements Details
Approaches used Individual or solo and Pair
Variables measured Effort, Efficiency
Blocking variable Subject experience
Experimental Design Single-factor block design
Development environment Visual basic 6.0 and Java 1.6

5. ANALYSIS AND FINDING
It was seen that most of the students participated very
enthusiastically and were satisfied with their work, while using
both solo and pair programming. The data collected from the
experiment was analyzed using multivariate analysis or factor
analysis and the factors were rotated through varimax
procedure. Two factors (pair and solo) were extracted. The
first factor pair had loading on 10 items and solo had loading
on 9 items. Again when all items on pair factor were analyzed
using principal component analysis and rotated through
varimax procedure, two factors were extracted such as pair
effort and pair efficiency. Both factors had loading on five
items each. Then all the variables Pair, Solo, PEffort, SEffort,
PEfficiency, and SEfficiency were calculated using the
formula mentioned in section 4.2 After calculating all these
variables the means were compared using paired-sampled t-
test. The means of pair and solo, PEffort and SEffort,
PEfficiency and SEfficiency were compared. All the results
show significant difference in the performance of pair and solo
programming. The results are shown in table 2 and results of
the hypothesis are shown in table 3. The response of
preferring pair programming is moderate i.e. 3.2 whereas
response of solo is 2.5 slightly favoring solo. The paired
sampled t-test shows the difference between the pair and solo
is 96.5=t at 000.=p and degree of freedom is 90.

Table 2: Effectiveness of pair in effort and efficiency

Item1 N M SD
Pair 91 3.20 0.54
Solo 91 2.58 0.68

T t90 = 5.96***

PEFFRT 91 3.01 0.53
SEFFRT 91 2.63 0.76

 t90 = 3.43**

PEFCNY 91 3.50 0.73
SEFCNY 91 2.43 0.89

T t90 = 9.40***

1PEFFRT = Effort in pair programming, SEFFRT = Effort in solo
programming, PEFCNY = Efficiency in pair programming, SEFCNY =
Efficiency in solo programming. T= t-Test value
N = No. of sample, M = Mean, SD = Standard deviation
* p <0.05, **p<0.01, ***p<0.001

Similarly the response of effort in pair programming is
moderate i.e. 3.01 whereas response of solo is 2.63 slightly in
solo. The paired sampled t-test shows the difference between
the effort in pair and effort in solo is 43.3=t at

001.=p and degree of freedom is 90. The result also shows

the efficiency in pair programming is between moderate and
high i.e. 3.5 whereas efficiency in solo is 2.43 slightly favoring

solo. The paired sampled t-test shows the difference between
the pair efficiency and solo efficiency is 40.9=t at

000.=p and degree of freedom is 90.

The formula used for t-test:

n
s

d
t

d

=

where 
=

=
n

i
idd

1

 and)()(
=

−
−

=
n

i
id dd

n
s

1

22

1

1

Here di= difference of individual data, sd= standard deviation
and n=number of sample

Table 3: Results of hypothesis

Response
variables

Hypothesis
t-

values
Result

Pair & Solo
µpair(Programing-technique) =
µsolo(Programing-technique)

5.96***
µpair(Programing-technique) >
µsolo(Programing-technique)

PEffort &
SEffort

µpair(effort) = µsolo(effort) 3.43** µpair(effort) ≠ µsolo(effort)

PEfficiency
SEfficiency

µpair(efficiency) = µsolo(efficiency) 9.40***
µpair(efficiency) =
µsolo(efficiency)

Further, correlations between the factors were studied. The
factors PEffort, PEfficiency, and SEffort, SEfficiency were
correlated to see whether the impact of effort in pair and solo
does have any significant effect on efficiency of code or not.
The result shows effort does have a significant effect on pair
than solo. Correlation coefficient of Karl Pearson denoted by r
as given by equation

σσ yx

YXCov
YXr

),(
),(= (i)

If (xi, yi); i=1, 2, 3, …,n is the bivariate distribution, then

()() −−=Ε−Ε−Ε= yyxx
n

YYXXyxCov ii

1
)}]()}{(([{),(

22)}({ XXX Ε−Ε=σ () −=

21
xx

n i

22)}({ YYY Ε−Ε=σ () −=

21
yy

n i

The summation extending over i from 1 to n.

The relationship between PEffort and PEfficiency is
significantly high i.e. value of 618.0=r ** whereas the
value of SEffort and SEfficiency is significant but low i.e.
value of 263.0=r *. This indicate that effort put in pair
results in 61.8% efficient result whereas the effort put in solo
results in only 26% efficient results as per this data set. This
shows the overwhelming acceptance of pair programming
technique in coding as well as in analysis.

Madhumita Singha Neogi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (3) , 2011, 1191-1196

1194

0

0.5

1

1.5

2

2.5

3

3.5

Pair
Solo

Figure 1: Mean of pair and solo

2.4

2.5

2.6

2.7

2.8

2.9

3

3.1

PEFFRT

SEFFRT

Figure 2: Mean of PEffort and SEffort

0
0.5

1
1.5

2
2.5

3
3.5

4

PEFCNY

SEFCNY

Figure 3: Mean of Pair Efficiency and Solo Efficiency

6. SUMMARY

Pair programming has been compared with solo programming
technique. The experiment started with a set of questionnaire
with a Likert type 5 time scale and then factor analysis was
done with principal component factor rotated through varimax
procedure. The values generated were then compared with
paired sample t-test. The result shows that pair programming is
more efficient and effective in solving programming
assignments.

7. ACKNOWLEDGMENT
 I wish to extend my heartfelt thanks to Prof. Dr. Himadri
Sinha of Xavier Institute of Social Service, Ranchi for his
invaluable help in data analysis.

REFERENCE

[1] Arisholm, E., Gallis, H., Dyba, T. , Sjoberg, Dag I.X., “Evaluating Pair
Programming with Respect to System Complexity and Programmer
Expertise”, IEEE Transactions on Software Engineering, Vol. 33, No. 2,
February 2007, pp. 65-85.

[2] Bhattacherjee, V., Neogi, M., Mahanti, R., “Are our Students Prepared
for Testing based Software Development”, Paper presented and
published in proc. for CSEET, Feb. 17-19, pp. 210-211, 2009a.

[3] Bhattacherjee, V., Neogi, M., Mahanti, R.”Software Development
Patterns Of Students: An Experience”, National Journal of System and
Information Technology, Vol2 (1), pp. 15-21, June 2009, 2009b.

[4] Bhattacherjee, V., Neogi, M.S., Mahanti, R., “VOSDM: Agile view for
budding IT Professionals”, Accepted for presentation in International
Conference on Business and IT: Contemporary Research and
Development, IMT, Ghaziabad, 25-26, Feb. 2010.

[5] Bhattacherjee, V., Neogi, M., Mahanti, R., “Software Development
Patterns in University Setting: A Case Study”, Proceedings of the
National Seminar on Recent Advances on Information Technology,
February 2007, ISM Dhanbad, pp 40-43.

[6] Bhattacherjee, V., Neogi. M., Mahanti, R., “Software Development
Approach of Students: An Evaluation”, Proceedings of the National
Conference on Methods and Models in Computing 2008 (NCM2C 2008),
JNU, New Delhi, pp 23-30.

[7] Canfora, G., Cimitile, A, Garcia, F, Piattini, M, Visaggio, C. A.,
“Evaluating performances of pair designing in industry”, The Journal of
Systems and Software, 80 (2007), pp.1317–1327

[8] Carver, J.C., Henderson, L., He, L., Hodges, J., Reese, D., Increased
Retention Of Early Computer Science and Software Engineering
Students using Pair Programming, 20th Conference on Software
Engineering Education & Training (CSEET’07), 3-5 July 2007, pp.115-
122, Digital Object Identifier 10.1109/CSEET.2007.29

[9] Dyba, T., Arisholm, E., Sjoberg, D.I.K., Hanny, J.E., Shull F, “Are Two
Heads Better than One? On the Effectiveness of Pair programming”,
Voice of Evidence, IEEE Software November/ December, 2007, pp. 12-
15

[10] Kwak, Y.H., Stoddard, J., Project risk management: lessons learned from
software development environment, Technovation, 24, 2004, pp. 915–
920.

[11] Kyungsub, S. C., Fadi, P. D., Il Im, Exploring the underlying aspects of
pair programming: The impact of personality, Information and Software
Technology, 50, 2008, pp.1114–1126.

[12] Lui, K.M., Chan, K.C.C., Nosek, J.T., The Effect of Pairs in Program
Design Tasks, IEEE Transactions On Software Engineering, Vol. 34, No.
2, March/April 2008, pp. 197-211.

[13] Melnik, G., Maurer F, “A Cross-Program Investigation of Students’
Perceptions of Agile Methods”, International Conference on Software
Engineering archive
Proceedings of the 27th international conference on Software
engineering, ICSE ’05 May 15-21, 2005, pp 481-488.

[14] Muller, M.M., Do programmer pairs make mistakes than solo
programmers?, The Journal of Systems and Software, In Press, available
online at www.sciencedirect.com., Vol. 80, Issue 9, September 2007, pp.
1460-1471.

[15] Neogi, M. S., Mahanti, R., Bhattacherjee, V., Evolution of Software
Process Models, Proceedings of the National Conference on
Technological Advances and Emerging Societal Implications, NIT
Rourkela, March 2007, pp 402-415,.

[16] Neogi, M., Bhattacherjee, V., Mahanti, R.,A Process Model for Software
Development Amongst Students, International Journal of Recent Trends
in Engineering Vol. 1, No. 2, May 2009, pp 69-74, 2009b.

[17] Neogi, M.S., Bhattacherjee, V., Mahanti, R. “Evaluating the
Effectiveness of VOSDM – A Vision Oriented Approach”, ACM
SIGSOFT Software Engineering Notes, Vol. 35, Issue 2, March issue
2010.

[18] Neogi, M.S., Bhattacherjee, V., Mahanti, R., An Evaluation of Student
Preferences during Software Development, In Proc., National Seminar on
Recent Advances Information Technology (RAIT ’09), ISM Dhanbad,
Feb.6-7 2009, pp 239-245, 2009a.

[19] Succi, G., Pedrycz, W., Marchesi, M., Williams, L., Preliminary
Analysis of the Effects of Pair Programming on Job Satisfaction,

Madhumita Singha Neogi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (3) , 2011, 1191-1196

1195

Proceeding of the conference on Software Engineering: Evolution and
Emerging Technologies, 2005, pp. 212-215.

[20] Succi, G., Stefanovic, M., Smith, M., Huntrods, R., Design of an
Experiment for Quantitative Assessment of Pair Programming Practices,
downloaded from
http://agilealliance.com/system/article/file/1097/file.pdf, 2001, pp. 18-23.

[21] Toll III V. T., Lee R., Ahlswde T., “Evaluating the Usefulness of Pair
Programming in a Classroom Setting “, 6th IEEE/ACIS International
Conference on Computer and Information Science (ICIS 2007), July
2007, pp 302-308.

[22] Vanhanen, J., Korpi, H., “Experiences of Using Pair Programming in an
Agile Project”, Proceedings of the 40th Hawaii International Conference
on System Sciences (HICSS), 2007, pp. 274–283.

[23] Vivekananda, K., Kuppuswami, S., “Students Attitude towards Pair
Programming in Short Duration Laboratory Exercises”. International
Journal of Computer Science and System Analysis, July-December 2007
pp. 141-148.

[24] Williams, L., Layman, L., Osborne, J., Katira, N., “Examining the
Compatibility of Student Pair Programmers”, Proceedings of AGILE
2006 Conference (AGILE'06), 10 pp. – 420.

Appendix A
Variable Factors Loadings

 Unrotated Rotated Communality
I II I II

1 .70 .13 .66 -.28 .50
2 .69 .18 .68 -.23 .51
3 .59 .21 .61 -.14 .40
4 .45 .49 .64 .16 .44
5 .59 .47 .75 7.247E-02 .56
6 .79 .13 .73 -.32 .64
7 -.54 .34 -.27 .58 .40
8 -.58 .55 -.18 .77 .63
9 -.72 .42 -.37 .75 .70
10 -.49 .43 -.18 .63 .43
11 -.38 .24 -.18 .41 .20
12 .59 .21 .61 -.13 .40
13 -.51 .36 -.22 .58 .39
14 .37 .20 .42 -3.223E-02 .18
15 .73 .16 .70 -.27 .56
16 -0.001 .56 .30 .47 .31
17 .31 .17 .34 -2.682E-02 .12
18 -0.05 .54 .25 .48 .30
19 0.04 .48 .30 .38 .23

Explained Variance 5.40 2.52 4.54 3.38
Explained Variance (%) 28.41 13.28 23.91 17.78

Appendix B

Variable
Factor Loadings on Pair Programming

Unrotated Rotated
Communalities

I II I II
1 .736 -.340 .780 .219 .657
2 .732 -.295 .748 .250 .623
3 .660 -.436 .785 .097 .626
4 .591 .066 .407 .434 .354
5 .702 .040 .508 .486 .495
6 .781 .242 .437 .691 .668
12 .629 .440 .193 .743 .589
14 .444 -.301 .534 .059 .288
15 .742 .213 .427 .643 .596
17 .334 .591 -.129 .666 .460

Explained Variance 4.22 1.14 2.92 2.43
Explained Variance (%) 42.20 11.36 29.21 24.34

Appendix C

Variable
Factor Loadings on Solo Programming

Unrotated Rotated
Communalities

I II I II
7 .658 -.331 .736 -.023 .543
8 .790 -.141 .776 .204 .644
9 .827 -.248 .855 .124 .746
10 .667 -.046 .624 .239 .447
11 .463 .356 .270 .518 .341
13 .668 -.190 .685 .109 .482
16 .344 .282 .194 .400 .198
18 .399 .652 .088 .760 .585
19 .231 .737 -.101 .765 .596

Explained Variance 3.18 1.40 2.86 1.72
Explained Variance (%) 35.31 15.59 31.81 19.09

Madhumita Singha Neogi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (3) , 2011, 1191-1196

1196

